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l. Introduction

In a previous report [1], we presented the results of our investiga-
tion up toc June, 1964 of waves incident upon a beach. Particular emphasis was
placed on the wave height at the undisturbed shore-line and the motion of the
shoreline, including the maximum run-up distance. For time harmonic
waves of small amplitude incident from the cpen sea, formuias for these quantities
were derived based upon the linear theory of water waves. The nonlinear theory
was used to find the range of validity of these formulas. In addition a numerical
method was devised for the calculation of the wave mction on the basis of the
nonlinear shallow water theory. This method wes applied to waves on a uniformly
sloping beach. The results showed fair agreement with the analytical results
for waves of low frequency but not for higher frequencies.

From June 1964 to June 1965 we have improved the numerical method by
using a finite difference scheme cf higher order accuracy described in section
3 of this report. With the improved method we have made extensive calculations
wvhich agree much better with the analytical results and which do so up to higher
frequencies. However the discrepancies between the numerical and analytical
results still occur at frequencies somewhat below those at which the analytical
results cease to be valid. Although we have not found the cause of these dis-
crepancies, we can conclude that at the lower frequencies the numerical results
are reliable. Some of the results are described in section 5 of this report.

We have also developed the analytical theory of wave breaking and bore
formation and growth on a uniformly sloping beach. This theory is based upon the

nonlinear shallow water theory. By employing the method of characteristics in
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section 6 we determine how an incident wave becomes distorted and finally reaches
the breaking point. Then 1n section 7 we utilize the theory of weak shock waves
to determine how the bore forms and grows. This analysis, being based on the
hypothesis that the wave is weak, cannot yield all the properties of the bore,
especially those at the shoreline. Nevertheless it does determine how the height
of the bore increases rapidly at first and then more gradually. It also determines
the position and gpeed of the bore as functions of tiue.

This theory of bore formation and growth on a sloping beach should

form the basis of further theoretical and numerical investigations of water

wave run-up.




2. Review of anq;ytical results

——— B

In order to compare our present numerical results with our previous
analytical ones, we shall first review the analytical results contained in our
previous report. It is convenient to present those results in terms of the
dimensionless variables which we have used in the numerical work. These dimension-
less variables are the time, t, the horizontal distance x measured from the un-
disturbed shoreline, the undisturbed water depth H(x), the disturbed water depth
h(x,t), the shoreline position £(t) and the horizontal water velocity u(x,t).

They are related to the corresponding dimensional quantities t, X, H, h, £ and U

by the scaling relations

xDecota, h=-hD, H=HD

= t(D/g)l/2 cot @y u = u(gD)l/a, 'E =£ D cot a

x

1.

ot

Here o is the beach angle at the undisturbed shoreline x = 0 and D is a verticsl
length scale factor. It is to be noted that the horizontal length scale factor
is D cot a. See Figures la and 1b.

We have found it convenient to choose D so that the dimensionless
undisturbed water depth H is unity at x = -1. In additior the undisturbed
depth is zero at the undisturbed shoreline. Thus H(x) must satisfy the two
conditions

2. H(0) = O, H(-1) =1

It is assumed that the water lies to the left of the undisturbed shoreline in
the region x < O before the disturbance arrives. For & uniformly sloping bottom
profile, the dimensionless undisturbed depth i1s simply

3. H(x) = -x.
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Let us assume that the incident wave height [h(x,t)-H(x)]inc in the
deep water far from shore, i.e., in the region x << -1, is given by a periodic
sinusoidal wave
% [h(:nc,‘c)-li(x)]inc = 8 cos(wt-px)

Here the dimensionless angular frequency w, the dimensionleses wave number B and
the dimensionless amplitude a occur. They are related to the dimensional angular
freqiency w and amplitude & by the relations

5. W = E(D/g)l/2 cot a, 8 =8/D, B = Beg-lD cot! o = u tan Q.

The amplification factor A is defined as the ratio of the maximum water depth at
the undisturbed shoreline to the amplitude of the incident wave far from shore.
Thus

6. A = max|h(0,t)/a|
t

We have previously determined A for water of slowly varying depth. This
means water for which the fractional change of depth in a wavelength 1s small
except near the shoreline. When this condition is satisfied and 1lim H(x) = 1,

X 9 -~

we find that A depends only upon w and q and is given by

g \1/2
7. Aw,a) = /& K‘canh 2+ —2—
cosh z/

Here z , a function of w2 tan2 a, is the positive 100t of the equation

8. z tanh z = watsnza

Tn this case it is not required that H(-1) = 1 since D is chosen as the undis-
turbed depth at x = <@, Graphs of A as a function of w for varicus beach angles
a, based upon (7), are given in Figures 3 and 7. The limit of A(w,a) as a tends

to zero is easily found to be




9. A(w,O) = Eﬂw
Since the result (9) applies when w is fixed, it follows from (5) that w tends

to zero as a does. Therefore (9) is the asymptotic form of (7) for low frequencies

W,

The result (7) was obtained in two ways. First it was deduced from the
linear theory of water waves in water of any depth. Then it was rederived by
matching the result of the linear theory in deep water to the result of the non-
linear shallow water theory employed near the shore. The latter derivation
alsc yields a limitation on the incident amplitude for the result to be valid.

It implies that the amplified wave height be small compared to the wavelength.

Anslytically the condition is

1

o

10. a<a =5
w A(w,u,)

max

Here A is given by (7). Graphs of this limiting ampliitude as a function of w are
shown in Figure 4 for various values of a.

Tee result (9) was also derived in another way. It was shown to be
the high frequency asymptotic form of the amplification given by the linear shallow
water theory in water of arbitrarily varying depth. Thus the result (7), which is
valid for high frequency waves, has a low frequency asymptotic form which is the
same as the high frequency asymptotic form of the result of the shallow water
theory, a theory which is valid for low frequencies. This shows that the two
results are asymptotically equal in some intermediate frequency rarge, as one
should expect and that the two results supplement each other.

For very iow frequenciee, the linear shallow water theory yvields

11. A=2+20%D +...
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Here b is defined by

o0
12, b = f x[H'l(x)-H'l(m)]dx
0]
In the special case of a piecewise linear bcttom prcfile, the eguations
of the linear shallow water theory can be solved explicitly for all frequencies.
We have considered the special case in which

13. H(x)

X, =-1<x<0
= 1, x< -1

In this case the amplification is given by

1k, A(wya) = 2, J‘g {\ 2w E‘E—g + Ji ,\eu) 3%-@ -1/2

3 \ /
Here Jo and Jl are Bessel functions of orders zero and one respectively. This
function agrees with (11) for small values of w and with (9) for large values of w.
A graph of A based on (14) is shown in Figure 3 for a = O. It is clear from (1k)
that when a is small, A is practically independent of a.

On the basis of all of the preceding results, we can formulate an over-
all description of the amplification as a function of frequency and beach angle.
At zero frequency the amplification is two and then it increases quadratically
with the frequency as is shown in (11). It continues to increase (see Figure 3)
in a undulatory manner as is shown by (14), with an undulation frequency determin=d
by the horizontal scale of the bottom profile. It undulates about the curve
A= (hnw)l/a, which it approaches as w increases. Then the amplification con-

tinues increasing at the slower rate given by (7). This latter transition

shows that as the water depth becomes appreciable compared to the wavelength,




i

it has “he effect of diminishing the amplification.
The gradual increase of amplification with frequency just described
applies only until bore formation occurs. The amplitude at which this occurs

for any given frequency is given by (10).

A cuantitative theory of amplification and run-up when bores form has

not yet been developed.

3. Formulation of the general problem

The finite difference calculations are based on the same nonlinear
shallow water theory formulation presented in [l], whirh we repeat here for
completeness.

In terms of the variables (1.1) the mass ccnservation equation is
1. ht + (uh)x = 0,
and the linear momentum conservation equation is

2. ut + uux = (H-h)x .

If +he location of the shoreline at time t is denoted by x = £(t), then since
the water depth there is always zero we have

3. n{E(t),t] = o.

In addition the velocity of the shoreline must be equal to the water velocity

at the shoreline so

k, B ule(s),1].

dt

Equations (3) and {4) are boundary conditions which must be satisfied on the

moving shoreline.
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We shall consider the motion only in the interval -1 < x < £(t) for
t > 0 since we assume that known (subsonic) waves are incident from x < -1
for all t > 0. If the local sound speed is denoted by ¢ = \/H then (1) and

(2) can be written in characteristic form as

]
(= o]

5s (u + 2c)t + (u +¢c)(u + 2c)x .

6. (u - 2c)t +(u - c)(u - 2c)x H_.

x
Equation (5) determines (u+2:) along the "positive" characteristics, dx/dt = u+c,
which, as t increases, enter x > -1 from x < -1, If the linear shallcw water
theory were valid for x < -1 and H(x) = const = 1 there, then the general solution
would be

u = F(t-x) + f(t+x),

h -1 = F(t-x) - f(t+x).

In the linear theory we use ¢ = Vﬁ; =1 + (h-1)/2 and so

u(x,t) + 2c(x,t) = 2[14F(t-x{].
Clearly the function F in this equation represents the incident part of the linearized
wave motion. Thus we take for the boundary condition to be imposed at x = -1:
o u(-1,t) +2c(-1,t) = 2[1 + F(t-1)]

The water is to be at rest initially so that
8. h(x,0) =0, u(x,0) =0 in -1 < x < €(0) = O.
Our problem is thus: to solve (1) and (2) for u(x,t) and h(x,t) in -1 < x < £(t)
for t > 0, subject to the conditions (3) and (4) on the unknown boundary x = €(t),
the condition (7) on x = -1 and conditions (8) at t = C. The shoreline position
E(t) must be determined simultaneously. We shall study only mctions in which bores

are not present.
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4, Finite diffg;ence §pheqe:

—— — -~

The numerical method which we employ is of higher order accuracy then
the one previously employed in [1} and is based on the lLax-Wendroff scheme [2].
Again we use a unitorm spatial net, xJ = JO&x and possibly non-uniform time net,
t,.. =t + At . The computed shoreline position at time t

K+l k k

ﬁk = &(tk) and then xs(k)

K is denoted by

is defined as the net pcint for which

ax 3o
1. Xsx) *3 < € < *s(x) ¥ T2 ¢

The calculations at time tk+1 are then divided into four kinds for four different

types of net points, as follows:

I) interior points: X, S %, < Xg(

J k),

I1) shoreline interior points: Xy = xs(k)’

III) incident wave: X

IV) shoreline: €k+1'

At points cf type I and II (see Figures 8a,b) we use high order
accuracy difference approximations of the equations of motion (3.1), (3.2).
Rather than write down the messy aifference equations, which are not instructive,
we shall indicate the expansions from which they are easily deduced: Thus at

any point P of Figure 8a or 8b an application of Tayior's theorem yields

2
h(P) = h(P') + 4t h (P') + %— h (P') + o(atd),

at®
2

u(P) = u(P') +as u (P) + &= (pr) + o(at3).
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Using (3.1) and (3.2) we can eliminate u_ and h. on the right hand sides sbove.

Also, differentiating (3.1) and (3.2) with respect to t, we can eliminate u,

and h,, to get finally

tt
2. h(P) = h(P') - &t & (uh) at” 3 Bguh) a(é o® +n-H) 3
. e |P‘+2§u YR/, o)
z 2y |ar 32 uln-n
P! pt

We now use u, h and H at the points L', P' and R' to approximate the x-derivatives
appearing on the right hand sides of (2) and (3). Since the spacing is uniform
for points of type I these approximations are easily obtained to accuracy O(3x2)
by using centered difference quotients. For points of type II the spacing is in
general non-uniform. However the terms multiplying At are first derivatives

and so can again be approximated to O(Axe) using data at three points. The
remaining terms are approximated to within O(Ax) but since they are multiplied

by Ame we retain third order accuracy. One should have no difficulty in deriving

the difference equations from the sbove description.

The difference equations at points of type III, see figure 8c, are
identical with those used previously (see egs. {37) and (38) of [1]). They are
difference approximations of the characteristic equation (3.6) centered at the
nidpoint of the mesh rectangle in figure 8c. Combined with (3.7) these equations
yield u(P) and h(P) to third order accuracy.

To fit in the position of the shoreline to higher order accuracy we

again note that
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: 2.,
g(tet) = £(t) + At E(t) + S E(t) + o(at?)

However from differentiating (3.4) and using (3.2) at x = £(t) we have

b, g(t) = [H(x) - n(x,t)],

x=e(t)
go that, recalling (3.4),

2
5. E(tat) = (t) + At u((t),t) + S[H (E(t) - h (E(t),t)]+ o(atd)

The x-derivatives in (5) can be approximated, using H and h at points P' and R'
of figure 8b, to accuracy O(Ax) and so if u(€(t),t) is computed to accuracy

O(sz) we get E(t+At) = £(R) to_third order accuracy. To compute u(€(t+At),t+At)

we use (3.4) and (4) to get:
6. u(g(t+at),t4at) = u(E(t),t) + At (E(t))-h _(E(t),8)] + O(at)

Thus with the same approximations to x-derivatives used in (5) we obtain u(R),

see fi;ure 8b, to second order accuracy.

X
)

The stability condition and interpolation procedures (for € +

k4l ~ x4l

of [L] are also employed but we do not repeat them here.

5. »Results of the calculations

In all of the calculations we used the uniformly sloping bottom profile
(2.3) and uniform x-spacing, Ax = 1/200. Tue incident wave function used in
(3.7) was
1. F(t-1) = a sin wt,
Calculations were run for various values of the amplitude ¢ and frequency w in

the following ranges: 1073 <a<8 x1073, 1 < w < 10, Each case was run until
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at least 10 and perhaps as many as 14 full period waves had reached the shoreline.
In most cases all significant transient effects were absent after 5 or 6 periods;
however in some cases a steady regime was never attained.

Typical cases in which time harmonic steady states were established
are shown in figure 2. In figure 2 graphs of ﬁ(t)/a are shown for two cases
in which a = 10'3 and w = 2 or 7. The steady state periods in these cases are
Just n or 2x/7. After sbout the first 1% cycles of shoreline motion the zeros
of €(t) have these periods. Significant motion of the shoreline is not observed,
in either case, until about t = 2, However this is just the time required for

a sonic disturbance to propagate from x = -1 to x = O over the bottom profile

(2.3); 1.e.
(o]

J & - e

-1 -1
The fact that the signals actually arrive slightly sooner may be attributed to the
effects of the nonlinearity, near the shoreline, which increase tne characteristic
speed (and to a small numerical effect). These figures also show that the maximum
steady state runup distance may be exceeded by some of the initial, transient,
runups.

For comparison with the theoretical results we define the computed

amplification as

max g.(._).t

T<t<T+ %ﬁ a ’

2. A

fit

where T is some "large" time. If this quantity varies slightly with T we may

use an average over several periods. In Table I we 1list this amplification as
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well as the corresponding minimum shoreline excursion for a variety of cases.
When the variation of these quantities over the last three computed periods was
not small (say less than 5 %) we list the range of observed variation. Thus,
for example, the case w = 8 and a = 10"3 4id not quite reach a steady state

and the amplification varied between 12.9 < A < 1L,2 in the last few periods.

The first column of Table I is plotted in figure 3 together with
theoretical amplification curves for a = O and q = tan ™~ 1/10. The agreement
is very good up to w = 6 (for the o = O curve) and should be contrasted with the
previous calculations (in figure 5 of [1]). As is shown in this figure and in
the table, there seems to be some kind of "resonance" near w = 6.5 since the
amplification becomes very large there. (There are lesser oscillations near
w =4 and w = 5.5) Beyond this resonance the computed amplification values
seem to lie along a curve considerably above the theoretical values of o = O.

Of course as the frequency increases bores will finally form and the
present calculations must fail in these cases. For a = 10'3 and w = 7 the results
show quite clearly (see figures 2b and 5) that nothing unusual happens and in fact
that bores do not yet form. We have shown in figure U4 the frequency at which
the calculations seem to indicate that bores form for various values of incident
wave amplitude. The criterion used was not the wild oscillations in or unsteady
behavior of £(t)/a but rather theoccurrence of negative values of h in the
calculations., This is of course not a precise determination and so the agreement
with the theoretical limit of equation (2.10) is quite gratifying.

In figure 5a we show the initial wave, for w = 2 and a = 10'3, as it

approaches the shoreline. The amplitude is seen to grow slowly till the wave

-l G G TN G e eIn N N AN By Ep SN
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front reaches the shorelirc &nd then the growth is much more rapid. Less obvious
in this figure i1s the decrease in wavelength due to the increasing local sound
speed. Some steady state wave profiles for this case are shown in figure 5b.
The arrows attached to the curves indicate the direction of the water velocity
at the corresponding locations. (The scale on these figures is suc: that the
bottom profile has slope lO3 and thus appears almost vertical.)

Figure 6a and 6b show corresponding wave profiles for w = 7 and a = 10'3.
The shortening of the wave length is clearly illustrated Lere. The local wave-
length, L, at a position x is, in the linear theory,

3. L(x) = %E e(x) = %ﬂ [x[1/2

As a rough check we examine the curve in figure 6a for t = 1.765 (or cyle No. 500).
Calling the distance between two successive nodes or two local extrema a half
wavelength, 1/2, and comparing this to the theoretical results (3) evaluated

at the midpoint of the two points in question we get:

.~ computations
L !
 linear theory

Somewhat better agreement can be obtained by replacing (3) with average local

wavelengths defined in
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R . 1073 5103 | acux103 | -3
a =10 4 a a'ylo ; a—lixlo li & = 6x10
w max ! min max A min —H max min max min
1.0 5 2.23 -3.23 :
L3f he b | x‘ [ |
2.0, ko6 -b.97 | 4.96 -4.98 i 495 = -k.99 4.9k =5.00
2.53 5.36 -5.38 i, ‘ b
30| 635 | -636 1 635 617 1630 . -6l 620  -6.48
3.5] 6.6 | -6.T5 } ' E |
u.o; 7.0/7.9 |=1.1/-1.7° 6.89 -7.00 7.18 -7.13 : 7.4/7.9 | -6.€
W5, T | T.TT | | .
5.0 7.87 -8.07 7.70 -8.15 :;11.2/18 ' -7/-10.5i' 8.2/30 | -3.4/-18.7
5.5 7.0/8.2 | -8.k " 5. |
‘: 6.0; 8.21 -9.45 i512.!+/11+.3. -8.1/-9.3*: 5.8/33 -h.e/-aeg
6.5 ! 25/125 | -22/-10 | :
| 7.0i 11.8 8.5 | 50/53 ' -28/-30 7 '
.50 2.4 | 9.3 , | | I |
8.0 ?;12.9/1&.2 -9.1/10.&:; | f ' |
9.0 5.4/uk | -1b/-k7 | | 1 |
10.0 | 43/80 | -18/-43 ; | i ‘l !
| 5 il [ i _ |
Table I
Maximum and minimum shoreline excursions in "steady" state [1.e. max L&El
_ T<t<T+P
ang . min %ﬁ- for T "large" and P at least a period].

T<t<T+P
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6. The breaking of waves

The theory of wave amplification reviewed in section 2 concerns the
case in which the waves do not break and bores do not form. But the excluded
case is the most important one in the study of tsunamis, since experience shows
that they always form bores. Therefore we shall now present a theory of wave
breaking with the consequent formetion and growth of a bore. We shall base our
analysis on the nonlinear shallow water theory, assuming the motion to be in a
plane and the bottom to slope uniformly. The main mathematical technique to
be used is the theory of characteristics, which will be combined with the theory
of weak shock waves.

A qualitative description of wave breaking based on the nonlinear
shallow water theory was given by H. Jeffreys in 1934. It is thet the higher
parts of a wave travel faster than the lower parts so that the wave steepens as
it propagates and ultimately breaks. This explanation was repeated by J. J. Stoker
[3] and illustrated by the calculation of a wave profile at successive instants,
showing how it steepens. Stoker also calculated the time and place at which the
profile becomes vertical at some point, which is the time and place at which
breaking may be said to occur. These calculations were for wares in water of
constant depth.

In this section we shall also calculate the wave profile at successive
instants, and determine the time and place at which breaking occurs, for waves

on 8 uniformly sloping beach. In the next section we shall determine the manner

in which the height of the resulting bore grows as it propagates toward shore.




We begin by writing the equations of the nonlinear shallow water theory

in characteristic form as follows

1. (u+2c)t+(u+c)(u+2c)x-ghx=0
2. (u-»2c)t+(u-c)(u-2c)x-ghx=0

For a uniformly sloping bottom hx is constant. Therefore we write ghx = -m Where

m is a positive constant. N-w (1) and (2) can be integrated with the result

(sce [3], p. 294)

]
.
i}

3. u +2c¢c +mt const, on C+ defined by o =u+c

]
'
1

L, u-2c +mt const. on C_defined by ST =u -c

The curves C+ and C_ are called characteristics.

From (3) and (4) we find

e
=
fl

1
2’(k+ +k ) -mt

A
o
"

% (k+ - k)

Now the equations for the characteristics can be written

dx 1

Te —dt=%k+-r£k_-mt on C+
dx 1

8. dt=Ek++ik—'mt on C_

The constants k_and k_ can be determined from (3) and (4) if the values
of u and c are known at some point on each characteristic., For example at the
shoreline x = €(t), we know that ¢ = O and u = dé/dt. Therefore if a character-

istic touches the shoreline at t = t8 , we have on it
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a(t)
9. k+ = mts + Tt

If the shoreline is at rest, (9) becomes

10, k+ = mts

In a region of the water which is undisturbed we have u = O and

c = / -mx . Therefore the undisturbed characteristics satisfy the equation
dx
11. 3 — 2 oJf -mx on Ci
The solutionsof (11) are
.2 1/2 1/2
12, t-t = im((-mxo) -(-mx) ] on C-_t

let us now consider a C 2 characteristic which crosses a family of C_
characteristics all of which have come from the undisturbed shoreline £(t) = O.

Then from (10), k_ = mt, on them so (5)-(7) vecome

13. u =%(k++mts) - mt
1
lhn cC = E(k+ © mts)
t
. &3, Lol

We now make the basic assumption of the theory of weak waves, which is
that the C_ characteristics are undisturbed. Then their equations are given by
(12) with the lower sign. Since they touch the undisturbed shoreline, we may
set t_ = t  and x, = 01n (12). 1In this way we get t, in terms of x and t. Then

by using this expression for t  We can rewrite (13)-(15) as
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_1 mt 1/2
16. u=5k -3 - -mx)
1 t "1 1

17. c =k, - +35(-mx) /2

dx 1 1/2
18. a'g=i'(k+-mt) --2-(-mx) /

To solve (18) we introduce T and z(T) defined by
19. T=mt -k, z(t) = (-mx)ll2
Then (18) becomes

&z 3z1.1
20. dt = 8 z t3

Since (20) is a homogeneous equation, it can be solved by introducing u(T)
defined by
21. u(t) = v 2(1)

In terms of u, (20) becomes
aw 3 1
22. T —8u+n u

The variables are separated in (22) so it can be integrated to yield

3/5 1.2/5

1. Ay (u - E) (u +3)

23.

Here Al is an arbitrary constant.

Upon eliminating u by means of (21) and simplifying, we can write (23) as
3 2
1 Iy .
2k, (z-f5(z+3 =a

Here A is another constant. In terms of t and x, (24) becomes

RE k12
25. [(-mx)l/e-%g+-3-d [(-uuc)l/2+2—t-§-t] = A
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The constant A can be expressed in terms of some point X, to on the character-

istic, ani /25) can be rewritten as

33 k72
26. [(_mx)l/?_%ﬁ.,,_r{l [(-mx)l/2 +l§§-§i§l =

3 2
3t 3k mt k
_ 1/2 o + 1/2, 0 T+
i [("""o) -T-*T] [("“"o’ T ‘e]
The constant k_is given by (3) in terms of the values of u and ¢ at (xo, t ) as

OI
27. k = u(xo,to) + 2c(xo,t0) +mt
Thus u and ¢ at any point (x,t) satisfying (26) are given by (16) and (17),
with k_given by (27).

To solve (26) for x in terms of t, we first define fl(xo,to) and

£(x ,t]) by

28. (x,,t,) (-mxo)l/2 +2(x ,t )

2%. f(xo,to) = u(xo,to) + 2f1(x0,to)

Now if f(xo,to) = O the squared term on the right side of (26) vanishes. By
equating to zero the squared term on the left side of (26) we rederive the
equation (12) for an undisturbed C+ characteristic.

Now let us suppose that f(xo,to) is not necessarily zero, but is small.
Then we may expect the characteristic (26) to differ only slightly from the
undisturbed characteristic (12). Therefore we shall try to express it in the
form

30, t -t = 2[(-mx )2 . (ux)/?] + q

(o]




w2]le

Here q is to be determined by substituting (30) into (26). By keeping terms of

the zeroth and first powers in f(xo,to) we find that

3/4
-1

X
2
X / 3

31, q-=- % £(x, t,) [\

Thus for small motions, the C+ characteristic is given by

x\3/h
& t-to=%[<-mxo>1’2-<-mx>1/el-%f(nco,to)[’\f‘ -1]

We may now use (32) in (16) and (17) to obtain u and ¢ on the C,

characteristic (32), with the results
o3/t

33. u(x:t) = % f(xo:to) k'x_o
- 3/b
.
3k, e(x,t) = (-mx)/2 4 Le(x ,t) 2

These results are not valid near x = O because there it is not correct to omit
higher order terms, as was done in deriving (31). In fact the full expression
(26) for the C, characteristic leads to finite values of u and c everywhere
including x = C.
It is easy to see from (32)-(34) that wave crests steepen in front anu
become vertical as they approach shore. To show this, let us evaluate ux(x,t)

assuming that the initial values of u and ¢ are given on the line xo = constant.

Then from (33) we have

o 0

L/ 4t
35. u(x,%) = - g £x,t T, 2 fto(xo,to)(xo/x).a/h e

Now from (32) we find
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dat

(o)
360 - E

. /3 " X 3/h dt
= (-mx)'l/e + ﬁ; f(xo,to)xZ'4 x-7/4 - %-ft (xo,t )[i—g -%}-Ei
o

Solving (36) for dto/dx ylelds

dto
37. =

' 1
| n%fto[(xo/xﬁ/’*-l]-;- (-ux) 22 4 s

We see from (37) that dto/dx becomes infinite when the denominator vanishes which

5%t

x at which this occurs is found from (37) to be

w3
38. X = xo[l + E-j

occurs if u, +2f, > 0. Then from (35), u, also becomes ininite. The value of

t

The time at which this occurs is obtained from (32) by inserting the value (38)
for x. The first occurrence of an infinite value of ux is determined by the value
of to which minimizes t. Exactly the same type of consideration applies if the
initial values of u and ¢ are given at to = constant cr on any other curve in

the X to plane.

When u, becames infinite, Cy also becomes infinite. The first occurrecrce
of this vertical slope for a given wave is called breaking of the wave. There-
after the solution (32)-(34) is multiple valued. This multiple valuedness can
be eliminated by the introduction of a discontinuity, called a bore, into the

subsequent wave profile., We shall now show how this is to be done.



T. The formation and growth of btores.
A bore is & discontinity in ° iter depth and velocity across which two
Jump conditions must be satisfied. These are the mass and momentum equations

which may be written in the form

1. (nl + h)(u1 - B8) = (T|2 + h)(u2 - 8)

2. (ny#h)u, (a,-8)+ B(n )2 = 1 9h)u, (u,-8)+ E(nyen)°

Here Ui and uy denote the wave height and water velocity on side one of the bore,
§ is the bore velocity and Nys Uy denote quantities on side two. From (1) and

(2) we find for a weak bore, i.e., one for which [ql-qel << h,

3. § = u, * Jeh {i + gt ...}
— M,
h. ul = u2 i 8h \ —-h_-’ + > e 0

If the fluid crosses the bore from side two to side one, the plus sign applies
in (3) and (4), and side two is called the front.
When side two is the front, we find from the definition of ¢ and from

(4) that

— 31, -1
5. c.Hu4c tu, = 2(u, + \/gh ( 1l + hl 2 + .o ]

171 7272

Upon comparing (5) with (3) in which the plus sign 1s chosen, we find that




2=
dx dx
g - & _Li 1 __2 \y
6. 5 (cl+ul+c2+u ) + ... = 2K e t/ cee

Thus the speed of a weak bore is the average of the C+ characteristic speeds
on its two sides. This result also holds in gas dynamics and in certain other

cases.
The expression (6) for the velocity of the bore, together with the

express.ion (6.32) for the C, characteristics suffices for the determination of

the loctition of the bore as a function of time. To determine the bore lccaticn

1/2 m :

we again use the notation z = (-mx) and we also introduce ¢ = > - e

assume that the incident wave is given at x = X, which corresponds to z = z .

Suppose that two C_ characteristics which leave x = x 8t t =71, and t =t

with tl > t2, meet at the bore. The equations of these characteristicc are

given by (6.32) with t_ replaced by t, or t In terms of z and g these cqua*ions

5
are

T o+z-2 =0 - % f(ol)f(zo/2)3/2 - 1]
8. otz -2z =0, - % )|z /2) 3/2 - 1]

Here f(of denotes f(xo,tl).
Iet us write the equation of the bore in the form

9. otz -2z = G(z)

To determine G(z) we first combine (7) and (8) with (9) to obtain

10. G(z) =0 % [(z /z) 3/2 -1]

1

o, - % f(ce) [(20/2)3/2-l]

11. G(z)
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Next we wish %o utilize (€). Before doing so we observe, from the definitions of

z and ¢, that

ax __2zdz _ _ dz
= =3t " " m &t - %
Now from (9)
13. .2 — a6
G'(z)-1

Thus (12) and (13) yield
1k, 5 =z[1 +6'(2)]

To obtain dxl/dt and dxa/dt we differentiate (7) and (8) to find

15. a"g;' = -7 —d% = -z(-1+ E‘ Zf'(cl)zg/2 2-5/2]-1\ z(1+ E’ f(cl)zg/2 z~5/2]
ax dz ; /s e
16, 2 < -2 2 = w214 3 £(0)2Y2 272) 2 1e 26,232 272

Upon using (14)-(16) in (6) we obtain

7. 2G'(z) = % zg/g 2-5/2[f(01)+f(02)]

The problem is now that of solving (10),(11) and (17) for o,, o. and

1’ "2
G as functions of z. To solve this problem we follow the method of G. B. Witham
[4]. We aifferentiate (10) aud (11) with respect to z and add the results,

obtaining

S Lo

18. 26'(2) = ¢ zz/g z‘5/2[f(al)+f(02)_] + =1 f'(ol)[(zo/z)3/2 - 13

f'(oe)[(zo/2)3/2 - 1])

+
-
]
-
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By taking account of (17), we can simplify (18) to

do £1(0.) ' dg,  £'(0.)
9. g e (YR g 5 [ - o

‘\ ~ -

To eliminate z from (19) we subtract (11) from (19) and find

2(01- 02)

fioli-fio 5

20. (zo/z)3/2 -1-=
2

Now (19) can be rewritten as

&

do ' 0. =0 do 0, =0
._l. - ! 1 2 ___2, 4 ' 1 2 -
al. az ~1-f (ol) fiol)-f(oz) b (02) flol)-f(cas 5

.
It is convenient to multiply (21) by f(ol)-f(oe) and then to -earrange

it in the form

a

do

2 7 14
22. £(o,) 5= - (o)) = = 5 53 [oy-01] [£(0,) 42 (a))])
Integration of {22) yields
%2
23. Jf f(o)do = % (ce-ol)Ef(02)+f(ol)]
o
1l

The constant of integration in (23) has been chosen so that (23) is satisfied

by 0y = 0y which corresponds to the first point on the path of the bore. The
condition (23) determines the correspondence between oy and Oye The geometrical
interpretaticn of (23) is that the area bounded by the curve f(o), the ¢g-axis and

the lines ¢ = 0y and o = 05 is equal to the area of the trapezoid with vertices

at [01, f(ol}], [62, f(oaﬂ, [ol, Ca and [62, Q]. Alternatively we may say

that the signed area between the curve f(¢) and the chord irom [ol, f(cl)] to
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[02, f(oa)] is zero. Thus the chord must cut off equal areas on the twc sides
of the curve.

Once 9, is determined as a function of oy from (23), the path of the

bore is found by eliminating G(z) from (9) and (10) to obtain

1 2
2k, 0-0,+2-2 = -3 f(cl) (zo/z)3/ -Zq

1 and o, by (20). Thus (20) and (24) are paramctric

equations for the path of the bore with o

Now z is given in terms of ¢

, as parameter. These equaticrns may

be written more explicitly in the form

-2/3
2(o, - 0.)
zZ 11+ 1 Z

£ z o f(ol)-f(oz)

Ul = 02
26. (o} Ul+ ZO -2 - f(Ul) F Ul)‘f(02)

The discontinuities in u and : can be found from (€.33) and (£.3%).

They are
, 3/2
1 0
2T weuy =5 o, [£oy)-f(oy)]
, 3/2
1l "o
28- cl—cz = E\\ ;-/ Lf(cl)-f(cz)]

By using (20) we may rewrite these results as

1
23. 4= U, = ¢- ¢y = 0p- oyt 2[f(cl)-f‘(oe)]

The equation (23) can be solved readily for o5 in terms of oy if £(o)

is an odd function, i.e., if
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30. f(-0) = -£(0)
It is then easy to see that the solution of (23) is

31. Cn = =0

2 1

Then (25), (26) and (29) become

201 '2/3
32. z =2z, l+ FTEIT
330 0’=Zo-z
4. u;-u, = ¢ -¢, = 20, + f(cl)

To illustrate the results (32)-(34) let us apply them to a sinusocidal
incident wave for which

35. £(o) = A sin \2%

Then (32) and (34, become

201 '2/3
2ng.

T /

36. z =2z 1+

A sink

2ngy
37. ul- u2 = cl- c2 = 201 + A sin \-Er

We can simplify these formulas by introducing in place of g, the parameter

1
defined by

ano
T

1

38. & =

Then (36) and (37) become




39. 2 =2 |1+ =2 =L
o} nA sin d
Lo u,-u, = ¢c,-c, = A £ 5 4+ 8in B
* 172 172 A
T '2/3
From (39) we find that the bore forms at z = zo(l+ ;K) where & = O
and travels toward the shore z = O which it reaches when d = n. From (33) we see
-2/3
that the bore path is an undisturbed C+ characteristic starting at o = zc-zo(l+ %K)
and reaching the shore at o = zZ, The maximum discontinuity across the bore
occurs at & = cos-l(-T/na) provided T/mA < 1, and its value is
/ 5 1/2
- T -1, -T [T
L1, ul-u.e'cl'cé'A\nA cos \nA, + [l- knA);]
If T/nA > 1, the maximum discontinuity occurs at & = n i.e., at the undisturbed
sT tan a
e

shoreline, and its magnitude is T. In terms of the original variasbles 7T = S
where q is the beach angle and To is the period of the incident wave.

When T > nA the ratio of the maximum bore discontinuity to the incident
amplitude is T/A = gl tan a/2A. Thus this factor, which we may call the velccity

amplification, increases with the period of the wave and with the beach arngle.




-
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